FLOW OF A BINARY GAS MIXTURE WITH ARBITRARY
ACCOMMODATION OF THE TANGENTIAL MOMENTUM
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The system of BGK (Bhatnagar, Gross, Krook) equations describing the isothermal flow of
a binary gas mixture in a capillary with arbitrary accommodation of the tangential momen~
tum is solved by the Bubnov—Galerkin method. General expressions are given for the ki-
netic thermodynamic coefficients which are valid in the whole range of Knudsen numbers
and have the correct free-molecule and viscous limits. The diffusion-slip coefficients, cal-
culated by using test values of the fraction of diffuse reflection, are compared with the ex-
perimental results.

A number of phenomena, such as diffusophoresis and mixture separation in a flow, exists in rarefied
gasdynamics, which cannot be described by classical hydrodynamics based on the solution of the Boltz-
mann equation by the Chapman—Enskog and Grad methods even in the viscous mode limit. Ounly the solu~
tion of the Boltzmann equation and its models with the boundary conditions substituted for the distribution
functions permits the regularity of these phenomena to be obtained.

The question of the influence of gas-molecule interaction with a surface, in fluxes caused by pres-
sure and concentration inhomogeneities of a binary gas mixture in a capillary under arbitrary rarefaction,
is examined from this viewpoint in this paper. The generalized thermodynamic fluxes are determined as
functions of the Knudsen number Kn from the solution of a system of model BGK equations with Maxwell
boundary conditions. In the viscous mode limit, the kinetic coefficients describing Poiseuille flow and mu~
tual diffusion are independent of the details of gas-molecule interaction with the surface, while the cross
coefficients (the barodiffusion constant and the diffusion-slip coefficient) are substantially governed by
this interaction.

Let us examine the isothermal flow of a binary gas mixture in a long capillary of radius R. The
density gradients of the first and second components are small and directed along the z axis. The mixture
flow is described by the system of BGK equations

ViV fi= v (M, — f) + vi, (M — ) oy
ViV = (M;—f) +v; (M, —f))

where Mj, Mjj are linear decompositions of the locally Maxwellian distribution functions, v; (viz, Vip, Vi cp)
is the molecule-velocity vector of the i-th component, Vijs vij are the frequencies of the cross self-col-
lisions, and f; is the molecule-distribution function of the i-th component.

Let us take the boundary conditions for the distribution function as
ft (l'izy Ciry 7-'1';") = €, —]u—i '+" (1- - 81) fi (l'z:v" Uiy l.i’-;') (2)
where g is the fraction of the molecules reflected diffusely from the wall.

Generalizing the results of [1, 2], the following system of integral equations for the velocities of the
components can be obtained by integrating the system (1) along the characteristics and using (2):
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Here m; is the mass of the i-th component molecule, T is the absolute temperature, 6 is a cross-
collision parameter (usually & :5/3), and n; is the density of the number of i-th component molecules.

An analogous equation is obtained for the j-th component by mutual replacement of the subscripts

i==j.

The system (3) is solved by the Bubnov—Galerkin method with a quadratic trial function. It is con-
venient to represent the result of the solution as expressions for the thermodynamic kinetic coefficients
which can be measured experimentally. According to the thermodynamics of irreversible processes, the
generalized fluxes corresponding to the generalized forces X; =8p/0z and X, = pdc; /9z are written as follows:

Jo= ¢ Cupy + o upy = —LyX, — LipX, (4)
Iy = upd — Cwyd = —LyX; — LyyX, (5)

where Lyy, Ly, Lyy, Ly, are kinetic coefficients, {u;,) is the mean velocity of the i-th component over the
capillary cross section, and

¢ = nmin, n=mn;+n;, p=nkl

Solution of the system (3) permits finding the kinetic coefficients introduced according to (4) and (5):
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These thermodynamic coefficients describe Poiseuille flow (Lyy), diffusion slip (Ly,), barodiffusion
(Lyy) and mutual diffusion (L,y), respectively, for any rarefaction. The equality of the cross-kinetic coef-~
ficient, proved in [1] for completely diffuse molecule reflection by the capillary walls, is conserved for
arbitrary accommodation of the tangential momentum.

In the free-molecule limit, (9)-(11) can be summed exactly, and the coefficients Ly, Ly,, Lyy, Ly

become
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where vy = (8kT/r mi)i/2 is the mean thermal velocity of the molecules. These expressions agree with the
results derived from the elementary Knudsen formula for free-molecule gas flow.

The viscous limit of the general solution is of interest in an analysis of the problem posed, since it
yields the limits of applicability of the Chapman—ZEnskog procedure for solving the problem. Assuming
the inverse Knudsen numbers to be ;, 6~ « in (6)-(8), we obtain
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where «, is the barodiffusion constant, ¢ is the diffusion-slip coefficient, Djj=kTmgej/mjmjdyij is the
mutual-diffusion coefficient, and n=plecj/vj+ci/vi] is the mixture viscosity.

All the kinetic coefficients have a correction term proportional to the Knudsen number {(Kn) in the
mode with slip. Because of its awkwardness, the correction term for the cross coefficients is not pre-
sented.

A comparison with the classical solution of the Boltzmann equation shows that the coefficients Ly
and I, are the same, while the cross coefficient Ly =Ly, differs in principle from that obtained by the
Grad method [3], by a dependence on the details of interaction with the channel walls.

The possibility of such a dependence in the viscous~mode limit is associated with the fact that sec-
ond-order viscous slip (~Kn?, which is commensurate in magnitude to the diffusion velocities and differ-
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TABLE 1. Diffusion-Slip Coefficients ¢

He—Ar | Ho—D., { Ha—Ar | Ho—1e| He—Ne| Ne—Ar| Hy—Ne} Ar—CO. | He—D.
G (15) 0.607 10.265 [0.898 |0.340 [0.519 }0.143 {0.875 | —0.0727 | —0.0541
Gle, =¢g;=1) 0.533 [0.260 | 0.94%4 10.374 [ 0,514 | 0.0823]0.905 | —0.0807 | —0.0925
Expernimen- 1.04 [0.334 |1.36 [0.46 |0.7% [0.34 [1.22 [-—0.026 —0.963
tal o (3T I Y I Y T 0 O B GV B Y T B B0 (51 {5}

ent for distinet components, yields a contribution to the characteristic diffusion velocities. The rate of
gas mixing, which is characterized by the mutual-diffusion coefficient, is independent of the collision fre-
quency of like molecules and of details of molecule interaction with the capillary walls, but is governed
completely by the cross-collision frequency.

The influence of incomplete accommodation of the tangential momentum affects the coefficient Ly, in
just the mode with slip, where the form of this dependence permits extraction of information about mole-
cule interaction with the surface from experimental results on diffusion in rarefied gases.

It follows from (15) that mixture separation and a diffusion pressure effect will occur in the viscous
mode even in a mixture whose component molecules will be different just by the accommodation coeffi-
cients of the tangential momentum. The diffusion-slip coefficients ¢, computed by means of (15), are com-
pared in the table with the experimental results of different authors. The accommodation coefficients of
the tangential momentum which are needed for the calculation, were taken from [6], where they have been
determined from Poiseuille flow tests.

The agreement between the experimental and computed coefficients is qualitatively satisfactory. As
a rule, the calculated values are lowered. Taking account of incomplete accommodation brings the experi-
mental and theoretical results closer together. Gas vapors with similar masses and high fractions of
specular reflection are particularly responsive to the details of molecule interaction with a surface.
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